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The stability of a spherically symmetric aggregate of point gravitating parti- 
cles relative to arbitrary small perturbations is studied. It is assumed that 
in the absence of perturbations the particles move along circular trajectories 
chaotically oriented in space so that the total moment of the aggregate is zero. 
Dimensions of the aggregate are large in comparison to the gravitational radius, 
and particle velocities are nonrelativistic. It is shown that there exist ini- 
tial mass-density distributions unstable relative to any perturbations with the 
exception of radial and dipole perturbations. A general stability criterion is 

r 

formulated, with the form d~2/dr > 0, where ~' = (4~G/r3~IPo:dr, P0 (r) is the aggre- 
0 

gate mass density, and G is the gravitational constant. The dependence of the 
increment on l, the perturbation harmonic number, is studied. In the case of 
weak inhomogeneity r(d~2/dr)/~ 2 << i the increment is maximum for quadrupole 
perturbations (l = 2) and decreases monotonically with increase in 1. In the 
opposite case of high inhomogeneity r(d~=/dr)/~ 2 >> 12 the increment increases 
with increase in I. Im the case of weak inhomogeneity the increment may be as 
small as desired. For high inhomogeneity, instability develops over a time 
period smaller than the period of revolution of an individual particle. For 
d~2/dr < 0 the system is stable. Consideration of system microstructure in this 
case leads to damping of macrooscillations (system "heating"). 

I. The trajectory of every particle is characterized by an angular velocity vector 

r 

~2(r ) i ~r i = - 7 - ~ =  4 ~ G r - a  p ~  

0 

(i.I) 

Here ~o is the self-congruent gravitational potential satisfying the equation 

Ar (0 = 4nGp0 (r) (1.2) 

The dimensions of the aggregate R are assumed much greater than its gravitational 
radius rg = 2MG/c 2, where M is the mass of the aggregate; c is the speed of light (R 
10rg), i.e., the system obeys the laws of classical mechanics. No assumptions are made 
relative to the form of the density po(r). 

Let the system undergo a small arbitrary perturbation. In [i], using the self-con- 
gruent field approximation an equation was obtained describing the natural system oscil- 
lations developing in such a case. The perturbed self-congruent potential was represented 
in the form of a superposition of spherical harmonics. In view of the linearity of the 
equations, the system was solved for an individual harmonic of the perturbed potential 
~1(r, e, ~, t) = xl(r , ~)Yim(0, ~)e -i~t. For the radic~l portion of each harmonic Xl(r , 
~) an equation was obtained, 

O~Xl (r, o)  ( 9At (r, o)  2Al(r,o)) 0x/(r,o) Bt (r, ~) 
A t ( r ,  ~) Or~ + O--------F----- + r ' 0------7---- - -  r Xl (r,. ~ )  = 0 ( 1 . 3 )  

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, pp. 63-73, 
November-December, 1974. Original article submitted May 4, 1973. 

I 
�9 19 76 Plenum Publishing Corporation, 227 West 17th Street, New York, hi Y. 10011. No part o f  this publication may be reproduced, .1 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording 
or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

782 



Here x / ( r ,  
gruent potential in Fourier representation 

l 

m) is the radial portion of the /-th harmonic of the perturbed self-con- 

= l +  Og~ ~, IP~o(~/2)1~/((% 2 - ~ 2 -  9.?) (1.4) 
�9 8 ~ _  l 

l 

~=-l  . . . .  % (%~-- ~2 ~" ( 1 . 5 )  

/2) ~[ z N ~ c = - _ ~ f i  + +z(z+~) % (co s -- 2.o.) 

Legendre polynomials [2], in particular, where pl 
mn 

(z + s): (z - -  s)! 

if 

A l (r, o)) 

B l (r, m) 

+ .o? ~ ip~0~(~ 
$=--1  

(0)  a r e  g e n e r a l i z e d  

if (l + s) is even 

(1.6) 
( l + s )  is Odd 

(1.7) 

PJ (a/2) = O, 

1 

IP~0(~/2) l  2 = 1 

~ =co=s.o_, a~' = l / G + s ) G - s + i )  
dO.~ ~Qg~ (r) = 3o2 (r) + r ~ = 4nGpo 

and Oo = Po(r) is the perturbed mass density of the system. 

(1.8) 

In the present study the frequency spectrum of natural oscillations obtained from Eq. 
(1.3) will be studied. We will show that among the eigenfrequencies of the system there 
may be imaginary values if the condition d~2/dr > 0 is fulfilled. This criterion indicates 
that in the case of monotonic increase of the initial mass density to the edge of the ag- 
gregate the system is known beforehand to be unstable. The dependence of the instability 
increment on l, the perturbation harmonic number, will be studied. In the case of weak 
inhomogeneity r(d~2/dr) << ~a the increment is maximized at 1 = 2 and decreases monoton- 
ically with increase in I. 

The stability criterion (Sec. 5) has the form d~2/dr < 0. Hence, it follows that if 
the density decreases monotonically toward the edge of the aggregate, then the system is 
unconditionally stable. We will also show that at d~=/dr < 0, the natural system oscilla- 
tions decay with time. These results are valid only for perturbations under the influence 
of which individual particles are not displaced by a distance of the order of the mean 
interparticle distance during the course of a revolution about the center of the aggregate. 
In the opposite case, linear instability occurs (the density amplitude increases linearly 
with time). 

2. We will consider the solution of the system oscillation equation. In [i] an ex- 
pression was obtained for Fourier harmonics of the macroscopic material velocity of the 
perturbed system, defined as W(r) = j(r)/p(r), where j is the material flux density. The 
expression for the spherical component Wr(r) of the velocity W(r) has the form 

W~ (r, O, ~, t) Vo (r ' ~) t = rm, o (~  [ 2 - -  ~ ,  O, O) ( 2 . 1 )  

The coefficient Vo(r, m) is determined by the radial portion of the perturbed self- 
congruent potential • m) through the formula 

l 

V~ (r, ~) = - -  ~ Y, ,=-i %~- ~- ~g2 ~z,, (~ 12) 
(2.2) 

• 1 7 6  ~ Or 2s~ (r) o ,  El (r~ ~) } r 

where ~/s(~/2) is the unified Legendre polynomial; m s and ~g2 are defined by Eq. (1.8). 
From the definition of~/s(0) we have ~s(~/2) = 0 if I + s is odd; thus, the index s in 
the sum (2.2) takes on values s = --l, --l + 2 .... , I -- 2, 1. 

The total macroscopic velocity corresponding to arbitrary initial conditions is 
written in the form of the Fourier integral of Eq. (2.1), 
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I I W(r ,  t) = ~ -  W(r ,  ~)e-i~td~ ( 2 . 3 )  

We will assume that system perturbations develop at a moment in time to = 0, so that 

W ( r ,  t) = 0  w h g r e t ~ O  ( 2 . 4 )  

We will examine Eq. (1.3) for the function x~(r, ~). This equation is soluble [3]. 
It is sufficient to know the behavior of its solution near the singular points, which per- 
mits calculation of integral (2.3). The singular points in the given case are the poles 
of the coefficients B~(r, ~) and A~(r, ~) and the zeroes of A~(r, ~). The function B~(r, 
~) has first- and second-order poles relative to r at points determined from the equations 

~ (r) o 
~ __Q2__Qg~=0 

The remaining poles B~(r, ~) in the notation of Eq. 
with use of the relationship 

(2.5) 
(2.6) 

(1.5) disappear after reduction 

t ~ z 

.=-,Y I P~0~, �9 , ,  ~ ( ~ . _  2~) - ~=-,Y'l p.0' (~ / z) I s ~ . '  

Near the first-order poles (2.5), solutions of Eq~ (1.3) have the form 

oo . 

xl = (r - -  r~ )  ~ c~' (r - -  r~ )~ 
~--0 (2.7) 

oc 

X~ = Cz11n (r " r B , )  - -  t q- ~ dk' (r - -  rB,) ~ 

where  r B, a r e  r o o t s  o f  Eq. ( 2 . 5 ) ,  t h e  numbers  c k '  and d k '  a r e  d e t e r m i n e d  f rom Eq. ( 1 . 3 ) ,  
and C = b ' _ ~ ' / r B T a a o  ' ,  b _ ~ '  and n o '  o f  t h e  L a u r e n t  e x p a n s i o n  o f  t he  f u n c t i o n s  B l ( r  , ~) 
and A l ( r  , ~) n e a r  t h e  p o i n t  r B ' .  Near  t h e  s e c o n d - o r d e r  p o l e s  ( 2 . 6 ) ,  c o i n c i d i n g  w i t h  t h e  
f i r s t - o r d e r  p o l e s  o f  A l ( r  , ~ ) ,  we h a v e  

~ o  

Xl = (r -- rB)* ~, c~ (r -- rB) ~ 

c o  

t 
Z~ =/X1 In (r - -  ra) - -  -~- + ~ d~ (r - -  rB) ~ ( 2 . 8 )  

k=l 
t- [ (b-2) ~ b-2 b-l] 

] = ~ 2rBa_l r B 2 

where  rB a r e  r o o t s  o f  Eq. ( 2 . 7 ) ,  t h e  numbers  dk and c k a r e  d e t e r m i n e d  f rom Eq. ( 1 . 3 ) ,  and 
t h e  c o e f f i c i e n t s  b - 2 ,  b_~ and a_~ a r e  found  f rom e x p a n s i o n  o f  t h e  f u n c t i o n s  B l ( r ,  ~) and 
Al(r, ~) in a Laurent series near the point r B. Near the zeroes of the coefficient AL(r, 
m) the solution has the form 

El = ~ c,/' (r - -  rA) k 
~=0 (2.9) 

oo 

Z2 = X1 In (r - -  r A) -t- ~ ,  d~" (r - -  rA) ~ 

where  r A a r e  t h e  r o o t s  o f  t h e  e q u a t i o n  

/ I Ps0 t (~ / 2) [2 
A t ( r , ~ ) = l  q-Qg~ ~, ~ - _ - ~ g =  = 0 ( 2 . 1 0 )  

T h i s  e q u a t i o n  c o n t a i n s  no odd powers  o f  m, i . e . ,  r A = r A ( ~ a ) .  I n  t h e  d e r i v a t i o n  o f  
Eq. ( 2 . 8 )  i t  was assumed t h a t  t h e  f u n c t i o n  A l ( r  , ~) has  n u l l s  o f  o n l y  f i r s t  o r d e r  r e l a t i v e  
to  r .  For  some v a l u e s  o f  r t h e  a p p e a r a n c e  o f  s e c o n d - o r d e r  n u l l s  i s  p o s s i b l e ,  wh ich  l e a d s  
to damping of density oscillations at these points. The solutions of Eq. (2.7)-(2.9) are 
determined to within the accuracy of multiplication by an arbitrary function ~. 

We will calculate the contribution of Eqs. (2.7)-(2.9) to the integral of Eq. (2.3). 
For this purpose we will consider the coefficient Vo (r, ~) appearing in Eq. (2.1). Sub- 
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stituting Eq. (2.7) in Eq. (2.2), we find that Vo(r, m) contains a term with the form 

In (r -- r B' (~)). Thus, the function Vo(r, m) with respect to r has a logarithmic singu- 
larity at the points m = ~B' E s~ [in light of Eq. (1.6), the index s takes on the values 
s = --1, --1 + 2, ..., 1 -- 2, l]. Substituting Eq. (2.8) in Eq. (2.2), we find that Vo(r, 
~) also has singularities of the form (~ -- ~B(r)) -I and in (r -- rB(m)) at the points ~ = 
~B(r), where mB(r) are roots of Eq. (2.6). The functions (2.9) produce a contribution to 
Vo(r, w) of the form in (r -- rA(m)) and (r -- rA(m)) -I. We will now find the contribution 
of these singularities to integral (2.3). We will take sections along the real axis in 
the complex plane ~ and close the contour by integration from below. Circumvention of the 
poles in accordance with Eq. (2.4) is performed such that all poles fall within the inte- 
gration contour. Calculating the integral (2.3), we have 

! 

w~ (r, t) = { Y, g~ (~) cos [ ~  (~, ~) t + ~ (~)1 
.=-~ (2 .11)  

q- ~ / A  (r) cos [~A (r) t § CA (r)l § F (r, t)} T.~o ~ (~ / 2 -- r 0, 0) 
A 

Here ~B(r, s) = s~ • /~2 + ~g2, and the frequencies ~A are found from Eq. (2.10). In 
Sec. 3 it will be shown that all frequencies mA(r) are different. Therefore, all poles pro- 
ducing a contribution to the second sum are of first order. In the first sum the index s 
takes on values S = --1 + 2, ..., 1 -- 2, 1. 

The amplitudes gs(r), fA(r) and phases ~s(r), ~A(r) may be calculated if the complete 
solution of Eq. (1.3) is known. The function F(r, t) is the integral over dimensions of 
the terms containing logarithms. The concrete form of this function, just as the form of 
the amplitudes and phases, is not of interest. For large times F(r, t) decreases as t -~. 

The frequencies ~B(r, s) are always real. The frequencies ~A(r) may be real or 
imaginary, depending on the form of the initial density oo(r). In Sec. 3 conditions will 
be formulated for po(r), under which mA are imaginary. 

3. We will consider unstable distributions of initial density. We introduce the 
notation 

X = ~ l ~ ( r ) ,  ~ - ~ t ~ - k i  
a~ = ~ ~-s,  ~ = ~ - - s  (3.1) 

The function A/(r, ~) may be written in this notation in the form 

X - -  %3~ I ~oo ~ (~ / 2) ]~ 
A~(r ,~)=t  + 2 ( ~ - - l )  ~tP~o(g/2)t ~ (X- -%p(x - -~p  + ( ~ - - 1 )  x - - ~  (3 .2)  

For each given 1 we will examine such initial density distributions 00(r) for which 

tL ~ = Q g ~ / ~ + t > l  ~ ( l > 2 )  
We consider the equation 

i ,-~ 2 (~t 2 - -  l )  ~ ,  ]P~o' ( n / 2 )  12 (x  - -  %p ( x  - - ~ p  + (~r - -  i )  

(3.3) 

[ Poo ~ (~/2)12 
X - -  ~ = 0 (B. 4) 

The squares of the frequencies ~A 2 are roots of this equation. 

We will find the position of the frequencies ~A in the complex plane ~. In light of 
Eq. (1.6), it follows that the cases of even and odd 1 must be considered separately. Let 
l be odd. Then 

x - = & ~  ( 3 . 5 )  Az(r, X ) =  i @ 2(i ts--  t) ~, IPs~(~/2)! ' 

where E' denotes that summation is performed over odd s. This sum contains I + ~/2 terms. 
Consequently, Eq. (3.4) has (1 + i) roots. The function A/(r, X) relative to X has (1 + 
I) positive first-order poles. We will show that Al(r , X) is monotonic in X. To do this, 
1 real positive roots of Eq. (3.4) will be calculatgd, each of which lies between two 
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neighboring positive poles of the function A~(r, X) (Fig. i). We will calculate the 
d e r i v a t i v e  3Az/3X 

l 
0_4, dX = --  2 (,u s = t) ~,'1P~o (n / 2)1' x ,  --  2%B~x - -  % ~  + =fl~ (%~ + ~) (X - -  %D~- (X - -  ~)~ 

$ ~ 1  

(3.6) 

_ _ ~ 2 + asBs(a 2 + We will consider the quadratic trinomial Qs(X) = X 2 2asBs X as 2 s s 
Bs2), appearing in the numerator of every term of sum (3.6). Its roots X = ~2 _ s 2 _+ 2s 
r s z) are complex, if the condition of Eq. (4.3) is fulfilled. Consequently, Qs(X) > 
0 for all s and ~AL/3X < 0, i.e., the function A~(r, X) decreases monotonically. Thus, 
the ~ roots of the function A~(r, X) are real and positive. We will consider the remain- 
ing (L + l)-th root. This root is real, since on the interval from x = --~ to the smallest 
pole X = BL = = (B -- ) the function Az(r , X) decreases monotonically from i to , i.e., 
intersects the real axis. We will now-determine the sign of this root. We calculate the 
value of A~(r, X) at X = 0. 

! ! 

A! (r, 0) = l - -  2 ( ~  - -  t)  ~ "  I P~ (~ / 2) I S 

! ! ( 3 . 7 ) .  

t=l t=--l . 

In deriving Eq. (3.7), Eq. (1.7) was utilized. Since s ~ > i, ~a > ~, we have A~(r, 
0) < 0. Consequently, the root considered is negative (Fig. i). 

The case of ~ is treated analogously. The function A~(r, X) then takes on the form 

I eL (~ / 2) I' '" ! ~ x -  =,~, 
A ~ ( r , X ) = i +  X - ~ ,  (~--i)  +2(~ ' - -1)~  IP*0(,=, /2)I'(x--%D(x--~,,) (3.8) 

where E" denotes summation over even s. As in the case of odd I the function Al(r, X) has 
(l + i) roots, of which Z roots are positive [if Eq. (3.3) is satisfied]. To calculate 
the sign of the (~ + l)-th root we evaluate Al(r , 0) 

Az(r, O)= t _ j p ~ ( ~ / 2 )  2.~--i~2 
l l 

s s -  i t ~ 2 ' /  
- -  2 ( ~ - -  t) ~ ' [ P ~ ( ~ / 2 ) I ~  2_ls~ = _  ~ "  ~ = - W  [ P ~ ( _  / )j 

$ = ,  ' $ = - - I  

t ! 

i . e . ,  t he  r o o t  c o n s i d e r e d  i s  n e g a t i v e .  

Thus,  i t  has  b e e n  shown t h a t  t h e  f u n c t i o n  A l ( r  , X) has  one n e g a t i v e  and l p o s i t i v e  
r o o t s .  I t  a l s o  f o l l o w s  from t h e  p r o o f  t h a t  A l ( r  , X) has  o n l y  f i r s t - o r d e r  r o o t s .  In  do ing  
t h i s  i n i t i a l  d e n s i t y  d i s t r i b u t i o n s  0 o ( r )  were  c o n s i d e r e d  f o r  which  1 + ~g2/fi2 > Z2. We 
d e n o t e  p o s i t i v e  r o o t s  o f  Eq. ( 3 . 2 )  by X i : mi2 /~  2 ( i  = 1, 2,  . . . ,  l )  and t h e  n e g a t i v e  r o o t  
by Xo = - t0o2/~ 2. We may now w r i t e  Eq. ( 2 . 1 1 )  i n  t h e  form ( l  > 2 ) .  

, l 

W~ = { ~ g~ (r) cos [0~, (r, s) t + ,~ (r)J + ~,/~ (r) cos [~  (r) t -k V~ (r)] -b H (r, t) + 
$=--I ~=1 (3.9) 

-k (/+ (r) + h+ (r, t)) e~0( r)' -k (/_ (r) @ h(r,  t))e-~'o(~)t}T~(n/2 --  ~, O, O) 

Here  t he  f u n c t i o n s  h i ( r ,  t )  nmy be r e p r e s e n t e d  as i n t e g r a l s  o v e r  d i m e n s i o n s ,  p e r f o r m e d  
f rom t h e  p o i n t s  m = + i~o .  For  l a r g e  t i m e s  t h e  f u n c t i o n s  H ( r ,  t )  and h ! ( r  , t )  d e c r e a s e  as 
t - 1  

The a g g r e g a t e  i s  e x p o n e n t i a l l y  u n s t a b l e  r e l a t i v e  to  p e r t u r b a t i o n s  c o n t a i n i n g  l o w e r  
ha rmon ic s  ( w i t h  t h e  e x c e p t i o n  ~ -- 0 . 1 ) ,  i f  t h e  d e n s i t y  9 o ( r )  s a t i s f i e s  Eq. ( 3 . 3 ) .  R e l a -  
t i v e  to  p e r t u r b a t i o n s  f o r  l = 0 . 1  t h e  s y s t e m  i s  s t a b l e  f o r  any i n i t i a l  d i s t r i b u t i o n .  In  
t he  c a s e  o f  r a d i a l  p e r t u r b a t i o n s  ( l  = 0) Eq. ( 3 . 2 )  has  a s i n g l e  p o s i t i v e  r o o t  Xo -- 1, o r  
mo = _+~(r). In  t h e  c a s e  o f  d i p o l e  p e r t u r b a t i o n s  ( l  = 1) t h e  s y s t e m  i s  a l s o  s t a b l e  (mo = 0 ) .  

786 



These perturbations displace the center of gravity and will not be considered further. 
The following harmonic I = 2 leads to oscillations in the system at some mass distribu- 
tions 9o(r). Any real perturbation not possessing central symmetry possesses this har- 
monic. 

We will consider initial distributions po(r) satisfying the condition 2 > 4. In 
view of the concepts discussed above these distributions are unstable with respect to any 
perturbations (with the exception of radial ones). Here 2 = i + ~g2/~2 = 4+ r(d~2/dr)/~ 2, 
Thus, we have the instability criterion 

d~ ~/dr>0 (3.i0) 

where ~2(r) is determined from Eq. (I.I). 

Distributions satisfying this criterion may also be unstable relative to higher per- 
turbation harmonics (Z > ~). For example, at ~z = 4 + e(r), where 0 < e(r) << i, instabil- 
ity is produced by perturbations with even I a 4, and in the case ~= = 9 + e(r) also by 
perturbations with odd I z 5. The proof is analogous to that given. 

The dependence of the instability increment co(r, l) on l is of interest. A study of 
this dependence requires cumbersome calculations. On the basis of what has been offered 
in Sec. 3 it may be assumed that the increment wo(1) decreases with increase in 1. This, 
however, is invalid, since at ~ >> l ~ > 1 we have in the first nondisappearing order of 
i/~ ~ 

Using Eqs. (1.6), (1.7), it is possible to prove that ~o2(/) = ~o=(l -- 2) + 21 -- !, 
~o=(1) > ~o2(I -- i), i.e., the increment increases with increasing 1. The other case is 
possible: for ~2 = 9 + s(r), where 0 < e(r) << i, for the first two perturbation harmonics 
leading to instability from Eq. (3.3) we have 

~ o  ~ ( l  = 2)  ~ 0 . 6 ~  z ( 0 ,  ~ o  Z ( l  = 3)  ~ 0 . 3 e  (r) ~ ( 3 . 1 2 )  

i.e., the increment decreases. [For odd ~ ~ 5 it is possible to show that ~o2(/) ~ f(1)e 
(r) ~=, where f(1) is a decreasing function.] Instability with the increments of Eqs. (3.2), 
(3.3) develops rapidly -- over a time of lower order than the period of revolution of the 
stars about the center of the aggregate iT ~ I/~(r)). Long~lived aggregates may be deter- 
mined. For ~= = 4 + c(r), where 0 < ~(r) << i (this indicates a slow increase in density 
towards the edge of the system), for even perturbation harmonics producing instability, we 
have 

~ o  ~ (~) = ~ (z) ~ (~)~ (~) 
l 

T (0 = 31 Pro_ (~ 12)I' [t3 .lP~o (~ 12)I ~ + 21 pg  (~ t 2)I' § [ 16 Y, ~w__4l- 1 P~o (~ / 2)t'] -~ (3.13) 

decaying with increase in ~. The maximum increment is ~o2(1  = 2) ~ 0.2e(r) • ~2 and may be 
as small as desired. 

We will consider the case of constant density 0o(r) = const. Stability of such a sys- 
tem was considered in [4, 5]. In those studies a conclusion was reached as to stability 
relative to arbitrary perturbations. In doing this the zero frequencies, whose existence 
follows from Eq. (3.4), were lost upon transition to the limit E + 0 (~= = 4 at Po = const). 
If a(r) < 0, which indicates a slow decrease in density toward the system edge, the system 
is stable. 

4. We will now consider stable density distributions. In Sec. 3 it was shown that 
for 2 > 4 there is always an unstable perturbation mode (l = 2). We will consider distribu- 
tions 9o(r), corresponding to the inequality 

< b~ < 4 (4. i) 

Using the methods of Sec. 3, after cumbersome analysis we find (details are given in 
[6]) that in the case of odd 1 the function A/(X) has the form depicted in Fig. 2. For even 
I the function A/(X) is depicted in Fig. 3. Thus, under the conditions of Eq. (4.1) all 
nulls of the function A/(X) are positive, from which follows the stability of the given sys- 
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Fig. i 

i 

] = 

A 

, f' 
Fig. 2 

, A  

tem. Using Eqs. (3.3) and (4.1) we find that the stability criterion has the form 

d~ 2 I dr < 0 ( 4 . 2 )  

We will now showthat consideration of system microstructure leads to damping of oscil- 
lations. We introduce the characteristic dimension A, at which the system structure exerts 
an effect. This characteristic length in any case is greater than the distance between 
stars ro - R/N x/s, where R is the system radius, and N is the number of stars. 

We will consider the case of radial perturbations (l = 0). Let a perturbation at mo- 
ment to = 0 have the form 

W,. (r, O) = V (O, Wo = W,  = 0 ,  Px (r, O) = 0  (4.3) 

where V(r) is a small arbitrary function satisfying the inequality 

v (r) ~ ~ (0 A (4.4) 

This condition means that the time necessary for a perturbed star to displace in radius 
by a distance ~A must be much greater than the period of revolution about the center of the 
system T = 2~/~(r). For a velocity W(r, t) with initial conditions (3.1) we have 

W r ( r ,  t) = V ( r )  c o s f ~ ( r )  t, Wo = W~ = 0  ( 4 . 5 )  

Calculating the perturbed density p I from the Poisson equation we find 

1 l d poF d~ t c o s ~ ( r ) t  ( 4 . 6 )  Pl (r, t) = ~ r= dr (r2p~ sin f] (r) t ~ dr 

From Eq. (4.6) it follows that the amplitude of density oscillations increases linearly 
with time, and for tl - ~(V(d~/dr)) -I the linear approximation is inapplicable. For per- 
turbations satisfying the condition (4.4), this is not the case. The frequency of velocity 
oscillation at two points at a distance of ~A differs by an amount ~A(d~/dr). Consequently, 
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where ~V ~ ~3. 
form 

after passage of a time t ~ (A(dg/dr)) -z the velocities at these closely neighboring points 
will have opposite directions. Thus, a peculiar "dephasing" develops. 

In [i] equations were derived for the macroscopic portions of the velocity W and dens- 
ity 0. In doing this it was not considered that the role of a physical point must be played 
by a volume with dimensions ~A. Formation of opposing flows within a volume ~h invalidates 
the condition dividing the macroscopic and microscopic particle velocities. To establish 
values of W and p it is necessary to average the quantities over a region with dimensions 
~A. While dephasing at a distance ~ was insignificant, this averaging did not change the 
form of the formulas for W and p. If over the course of a large time t~ ~ ~/V(d~/dr) dephas- 
ing becomes significant, this averaging indicates that a portion of the energy of the initial 
perturbation has transformed to a chaotic form. Interactions not considered explicitly lead 
to absorption of this portion of the energy which has become chaotic (system heating). We 
have 

( W > = - ~  WdV (4.7) 

This integral can be evaluated if we introduce a characteristic function of 

1 exp { (r'-~-r)~l 
/ (r') = ~--~- A~ J ( 4 . 8 )  

and carry the integration limits to infinity. Performing the integration, we have 

(W~> = V (r) e -t~/~' cos ~ (r) t ( 4 . 9 )  

where T ~ (5(d~/dr)) -I. The density p~, determined from the continuity equation also decays 
exponentially with time. As follows from Eq. (4.4), z << t~ ~ g (V(d~/dr)) -~, i.e., oscilla- 
tions damp out before the linear approximation becomes invalid. It should be noted that the 
system is linearly unstable relative to perturbations disrupting Eq. (4.4)(over a time t~ 
~(V(dfi/dr)) -~ the density p~ attains values of the order of Po). 

In the case of arbitrary perturbations not having central symmetry (l # 0) it is also 
necessary to perform supplementary averaging. Calculations with the characteristic function 
(4.8) give 

l 

<W,(r, O, ~, t)> = { ~ g~(r) e-~','~'cos [cob (r, s ) t §  ~(r)l  
l%-1 

_ t 2  . ,$  § ~, ]i (r) e l~-i. cos [o)i (r) t §  qh (r)] 4- V (r, t } } T ~  (~ / 2 - -  % O. O) 
i = l  

(4. i0) 

where the function G(r, t) at large times decays as t -I. The density p~(r, t) decays with 
time with the same damping index. 
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It has been shown that an aggregate with a mass distribution satisfying the condition 
d~/dr < 0 is stable relative to arbitrary perturbations. Oscillations which develop damp 
out with time. 

The authors thank Ya. B. Zel'dovich for his stimulating discussions of the study. 
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